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An algorithm to solve the one-dimensional Schrédinger equation subject to Dirichlet boundary condi-
tions is presented. The algorithm is based on a set of theorems that guarantee that when one solves the
Schrodinger equation for a confined system and allows the boundaries to increase, the solutions converge
strongly, in the norm of Hilbert space L,(— o0, ® ), to the exact solutions of the unbounded problem.
For the calculation of the solutions of the confined system we use a very efficient matrix method. By ap-
plying the algorithm to the harmonic oscillator and to the quartic and sextic potentials we show that
with this method one can calculate the eigenvalues and eigenfunctions of a nonbounded one-dimensional
problem with a high degree of accuracy and with very reasonable computational effort. We show that
the eigenvalues corresponding to the sextic potential, V(x)=1x?+a,x*+asx 8, for different values of
the parameter a; behave in a similar fashion as that described by Hioe et al. [Phys. Rep. 43C, 305 (1978)]

for the quartic oscillator.

PACS number(s): 02.70.Bf, 03.65.Ge, 02.60.L;j

I. INTRODUCTION

The exact numerical solution of the one-dimensional
Schrodinger equation is relevant in several areas of phys-
ics ranging from nonlinear field theory [1] to molecular
vibrations [2]. In particular, the class of potentials

M
Vix)=3 a,x* (1.1)
k=1

that are defined in the Hilbert space L,(— o, oo ) have re-
.ceived a great deal of attention mainly due to the fact
that the Rayleigh-Schrodinger perturbation series for the
quartic potential
Vix)=1x*+ta,x* (1.2)
is divergent [3]. Several analytical and numerical ap-
proaches have been attempted to solve the Schrodinger
equation for this potential [3-18]. The numerical
methods employed to solve this problem can be classified
according to their need to select an ad hoc basis set.
Among those that require a basis we can mention the per-
turbative and variational methods. We can further classi-
fy the numerical methods that do not use a basis as (i)
shooting (or integration) and (ii) matrix (or global)
methods [17-23]. The basic idea in the shooting
methods is to discretize the real axis, select an initial esti-
mate of the eigenvalues, and, by inward and outward in-
tegration, to iteratively refine the eigenvalue. In the ma-
trix methods, space is also discretized but by writing the
problem in matrix form one realizes that the matrices in-
volved for some operators have particular symmetries.
Thus, by exploiting these symmetries, it is possible to
design an efficient algorithm to find the solution of the
problem. It is important to note that these matrix
methods we are referring to are not matrix representa-

1063-651X/96/53(2)/1954(10)/%06.00 53

tions of the Hamiltonian. An advantage of the matrix
methods is that one does not need an initial guess to start
to solve the problem.

When the potential is defined in L,(— o, ) either
method, shooting or matrix, requires the specification of
an additional quantity. This quantity is the practical
infinity, that is, the value selected ad hoc to represent the
infinity. Typically [23-25], this point is ‘“judiciously”
selected and it is kept fixed after solving the problem for
some set of eigenstates. Usually, there is a compromise in
the selection of a fixed practical infinity. On one hand, it
has to be “large enough” to avoid the artificial lifting of
the eigenvalues, and, on the other hand, it has to be
“small enough” to overcome the instabilities associated
with the numerical integration. An intrinsic limitation of
this approach is that if one wishes to obtain the solutions
of highly excited states or for a completely different fami-
ly of potentials it is strictly necessary to tune the selection
again. To overcome some of these difficulties, Killing-
beck [26] has put forward the idea of using a “floating”
infinity to solve the one-dimensional Schrodinger equa-
tion by the finite differences method.

Several authors [27-30] have noted that, by confining
the system and allowing the boundaries to increase, the
solutions of the bounded system converge smoothly to
those corresponding to the unbounded one. For confined
central-field systems [31], it has been proved that the en-
ergy is a decreasing monotonic function of the size of the
confining interval. Very recently, Nufiez [32-36] has
provided a rigorous mathematical foundation to these
facts by stating and proving a set of theorems, the in-
creasing boundaries theorems, that guarantee the conver-
gence of the confined solution to the unbounded one.

In this work we present an algorithm to find the solu-
tions of the one-dimensional Schrodinger equation in
L,(—o,o). The algorithm combines a fast matrix
method [37,38] that solves the Dirichlet problem
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1 d*W(x)
2 dx?

Y(—R)=W¥(R)=0, R =(finite) ,

+[V(x)—E(R)]¥(x)=0, x€(—R,R),

(1.3)

and the increasing boundaries theorems. The procedure
described in this work has several advantages. First,
since it is a matrix method, it requires neither a basis nor
a set of test eigenvalues to “shoot” the method. Second,
the implementation of the increasing boundaries
theorems avoids the problem of practical infinity selec-
tion.

The structure of this work is as follows. In Sec. IT we
present some basic concepts and those aspects of the in-
creasing boundaries theorems which are relevant to the
present work. A detailed description of the matrix
method used to solve the Dirichlet problem, Eq. (1.3), is
presented in Sec. III. The implementation of the increas-
ing boundaries theorems is presented in Sec. IV. To show
the convergence and the stability of the method, in Sec. V
we apply the algorithm to the harmonic and quartic oscil-
lators, where analytical and very accurate numerical solu-
tions, respectively, are known. The application to the
sextic oscillator for different sets of the anharmonic pa-
rameters is also presented in Sec. V. The conclusions are
given in Sec. VI.

II. THE INCREASING BOUNDARIES THEOREMS

In this section we present some basic concepts and a
summary, without proof, of the increasing boundaries
theorems. For the proofs, the reader is referred to Refs.
[32-36].

The eigenfunctions of the one-dimensional Schrodinger
equation in a bounded region [ —R,R ] belong to a Hil-
bert space L,(—R,R). The natural definition of the
inner product in this space is

<¢7|‘P)R=fRRdx P*P(x) , @.1)
for any @,y E€L,(—R,R). Provided with a definition for

the inner product, it is straightforward to introduce the
concepts of norm

llollz={ele)x? 2.2)
and distance
drle,¥)=|lp—Yllg » 2.3)

in L,(—R,R ), where ¢ and 1 are any two elements that
belong to this Hilbert space.

Due to the completeness of L,(—R,R), any conver-
gent sequence {@, }°_, in this Hilbert space converges in
the sense of Cauchy, i.e.,

Jim [lp, =@, ]|z =0 . (2.4)

Another convergence criterion is the convergence in
the norm: the infinite sequence {¢, } -, converges in the
norm to the limit function ¢ E€L,(—R,R) if

Jim [lg, —@l[g =0 . 2.5
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The latter sequence is called a convergent sequence and
this type of convergence is usually referred to as strong
convergence [39]. As is shown in any mathematical
analysis textbook [40], a convergent sequence is a Cauchy
sequence. From the numerical analysis point of view,
Cauchy’s criterion is an invaluable tool to analyze the
behavior of any numerical method that attempts to solve
the Schrédinger equation since, in general, the exact solu-
tion g is not known.

If we have a sequence of operators {T,} which are
mappings from a Hilbert space H, to a Hilbert space H,,
we s;y that the sequence converges strongly to the opera-
tor T if

Jim T o—Te@||=0 V oEH . (2.6)

It is important to remark that the norm in Eq. (2.6) corre-
sponds to that defined in the range of the operators and
not to the norm of an operator. For self-adjoint opera-
tors one can define a similar convergence criterion, name-
ly, the strong convergence in the generalized sense
[32-36].

Turning to the increasing boundaries theorems, we
now state without proof the propositions more relevant
to this work. The reader is referred to Refs. [32-36] for
a detailed presentation and proofs of this subject.

We will denote as A and ﬁg the Hamiltonian opera-
tors associated with the following Schrodinger equations:

2
34

Ay=-14
2 dx?

+V(x)V=EV¥, xE(—o,x) 2.7)

with boundary conditions
W(—o0)=W(0)=0,

and

0 1 dz\IlR
ﬁR\I}R:——; +V(X)WR=ER\I/R, xe(_R’R)

dx?
(2.8)
with boundary conditions
Ye(—R)=W¥x(R)=0. (2.9)

The operators A and ﬁg are defined in different Hil-
bert spaces, and to compare them it is necessary to intro-
duce a new Hamiltonian operator A g that has the same
spectrum and eigenfunctions as A 3 and which is self-
adjoint in L,(— o, ). To proceed further we have to
identify each W&L,(—R,R) with an element in
L,(— o0, ) that is defined as

Y(x), x€(—R,R)

Ylx)= 0 otherwise .

(2.10)

Thus the Hamiltonian A g is the direct sum of AY and
the zero operator which is defined on the orthogonal
complement of L,(—R,R) in L,(— o, ). In this way,
the spectrum of Hy is the same as that of AY with the
possible addition of zero as an eigenvalue. Both opera-
tors have the same set of eigenfunctions.
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With the above definitions and results it is possible to
show that, if we allow the boundaries to increase, that is,
if we let R — oo, then the sequence {ﬁ r Jr converges
strongly (in the generalized sense) to the operator H,ie.,

dim A, v—Av|=0, (2.11)

where Y€ C5 (— 0, ).

This strong convergence in the generalized sense has
several consequences [32-36]. Below we present those
that have a direct impact in this work.

(i) If E;(R) and E;(R) are the eigenvalues correspond-
ing to two different eigenstates (i%j) of Eq. (2.8), then
their graphs never intersect.

(ii) The functions E;(R ) are nonincreasing.

(iii) If E; is the exact eigenvalue of the ith eigenstate of
the unbounded Hamiltonian Eq. (2.7), then E; is a hor-
izontal asymptote of the curve E;(R).

The previous propositions lead to the first increasing
boundaries theorem.

(IBT 1) Let E;(R ) and E, be isolated eigenvalues of H
and ﬁ, respectively. Then there exists at least one se-
quence {E;(R)} that converges to E; and satisfies
E,(R)ZE,; forany R.

By invoking the concept of stability it is possible to
state the second increasing boundaries theorem.

(IBT 2) Let E; be an isolated eigenvalue of H and E;(R)
the unique curve asymptotic to E;. Then E; is stable with
respect to the sequence {ﬁR }r. In particular, if E(R)
and WR(x) are the eigenvalue and eigenfunction, respec-
tively, of HY, then the sequence {WX(x)}p converges in
the norm of L,(— o, ) to the eigenfunction associated
with E;.

It is important to note, as has been clearly remarked by
Nuiiez [32-36], that all the statements made in this sec-
tion are completely independent of the numerical method
employed to solve the Dirichlet problem, Egs. (2.8) and
(2.9).

III. MATRIX FORMULATION
OF NUMEROV’S METHOD

In this section we review Lindberg’s matrix approach
[37,38] to find the solutions of the bounded one-
dimensional Schrodinger equation with Dirichlet’s
boundary conditions. We end the present section by
demonstrating that the numerical solutions obtained by
this method converge in the norm to the exact solutions.

To solve the one-dimensional Schrodinger equation
(1.3), Lindberg discretizes Numerov’s method [24] using
an equally spaced mesh with step

2R

h:
N+1"~

(3.1)

where N is the number of internal points in the grid, and
such that x =x; —R +kh. This leads to the expression
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Wi 1 =2, + ¥, 4, 1
2 —EFPk—l‘Pk—1+10Pk‘Pk

A
TP Wiy ]+ T W T10W, + W 4]

=— Lz_q,(e)+ .
240 K ’
where P, =P(x,)=2V(x,) and A=2E. By setting the
right hand side of Eq. (3.2) equal to zero, we arrive at the
starting equation of Lindberg’s matrix method. Note
that Dirichlet’s boundary conditions imply that

(3.2)

The resulting generalized eigenvalue problem can be
written in matrix form as

AV+AMY=0, (3.4)
where A4 and M are the tridiagonal matrices
. h? 10 h?
A=trid I—EP’“" _Z—Eth"’l—ﬁpk“ ,
(3.5)
h2
M =-—trid(1,10,1) , (3.6)
12
respectively, and W is the column vector
¥Y,=W(—R)=0
¥V, =W(—R+h)

W, =W(—R+kh)
Wy =¥(—R)=0

To find the eigenvalues, Lindberg [37,38] states and
proves two theorems. The first theorem establishes that
the eigenvalues of Eq. (3.4) are real and located within
the interval [P, +d, P, +dy] where

o ka (3.8)
1<ksN ~

Pmin:

(max)

and

_ 48  sin’[kn/2(N+1)]
h? 8+4cos’[km/2(N+1)]

For practical purposes, instead of the second theorem,
the following corollary is used: the number of eigenvalues
associated with Eq. (3.4) that are less than 6> 0 is equal to
the number of positive entries in the diagonal matrix A(0)
(for the details on how to construct the matrix A(6), see
Refs. [37,38]). Making use of this property, we proceed
to the isolation of the total number of eigenvalues (N )
that one wishes to calculate. This is accomplished by
successive bisections. After completing this step, we have
a set of intervals

k (3.9)

(3.10)
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such that the number of eigenvalues contained inside
equal I; is exactly 1.

To assure the validity of this theorem the step 4 must
satisfy the inequality & <1/12/|P,| for all points in the
grid. This sets an upper limit to the value of the step that
must be used to guarantee the convergence of the
method.

The following step is to reduce the length of each inter-
val. In our approach, we do this by 12 additional bisec-
tions. Finally, the eigenvalues are refined by solving the
following equation by the secant method:

det{A(6)}=0, €I, and i=1,2,...,N;. (3.11)

The determinant in Eq. (3.11) is obtained by taking the
product of the elements of A(8). The accuracy of the ei-
genvalues obtained by the procedure described above is
h*. Tt is possible to improve this accuracy to 4% by a de-
fect correction calculation [37,38]. This was not done in
the present work. For each eigenvalue, the correspond-
ing eigenfunction is obtained by inverse iteration.

We now turn to proving that the numerical solution
obtained with the method described in this section con-
verges strongly to the exact solution of the Dirichlet
problem, Eq. (2.9), in the limit when A —0. The proof
goes along the lines of that presented in Ref. [41] for the
finite differences method.

Rearranging Eq. (3.2) and multiplying by #? we have
that the exact eigenfunction (¥) and eigenvalue (¢) satis-
fy the following expression:

h? h? 10
=35 P | Yt et _Z—Ethk v,
+ 19,20y 4 [1-2p, |
12 k 12 k—1 k—1
h? R’ e
+EE‘I’k_1+HE‘I/k +---=0. (3.12)

If we neglect terms of order 4% and higher, we get an
expression that provides estimates of the eigenfunctions
(ny =¥, ) and eigenvalues (6=¢). This approximate nu-
merical solution satisfies the equations

2

12

2

h
1 Py 77i+1+“1“2‘677i+1+ Ni

10
—— 2p.
12h P,

10 h?
+—h20n. £
12h on; + ll

12Pi_1

MNi—1

h2
+E(9n,-_1——0 . (3.13)

Subtracting Eq. (3.13) from Eq. (3.12), introducing the

definitions e;=m,—V¥;, a,=4V!®, t,=1—Lh’P;, and

v;==—2—142p, and making use of the fact that the er-
ror in the eigenvalues is of order & 4 we have that

(V,'_%hZG)ei:(ti+1+—llih29)6i+1+(ti__.1+%h29)e[_1
+ LChO[¥, ,+10¥,+¥, _,]1+h%, ,
(3.14)
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where C is the coefficient associated with the error in the
eigenvalue. Taking the absolute value of Eq. (3.14) and
using the triangle inequality, one gets

Iv,-—%h20| le; |
S|ty 50200 ey |+t + 5h26] e,

+LICIAoY, +10W, +V, [ +hCa]| . (3.15)

With e=max,le;|, a=max;|q;|, t=max;|t;+ Lh%6l,
and g =max;|¥,|, Eq. (3.15) reduces to

lv; —19520] |e;| <2te +@h®+ah® . (3.16)
Since
lv—12h%0| <2+ 12h*max, |P,—6| ,
we conclude that
=Wl <> ——L——(nll; @(‘f}Zr . (3.17)
Taking the limit when 2 —0, we have that
2i_rﬂ)|17k—\llk|=0 , (3.18)

showing that locally the numerical solution converges
strongly to the exact solution of the bounded problem and
that the local error is of order h*.

Squaring Eq. (3.17), multiplying by Ax, and summing
over all points k in the grid, we obtain that

R 4
H”’I(x)—-‘l’(x)]]f%\/zR | IClgtalh® (3.19)

P,.—6
ml?xl . — 0|

If we take the limit of vanishing 4 in Eq. (3.19), we finally
obtain that

’}inhlln(x)—\ll(x)H:O . (3.20)

Thus we have proved that the numerical solution 7(x)
of the Dirichlet problem converges in the norm to the ex-
act solution of the bounded problem. This result is a
direct consequence of the fact that strong convergence
implies convergence in the norm.

IV. INCREASING BOUNDARIES ALGORITHM

The increasing boundaries theorems (see Sec. II) im-
mediately suggest a numerical procedure to solve the
one-dimensional Schrodinger equation associated with an
unbounded problem. This can be clearly seen by noting
that the increasing boundaries theorems and Eq. (3.20)
imply that the exact solution ¥;(x) of the unbounded sys-
tem is obtained when

Jim. ]}m]|¢§R'h)(x)—¢i(x)||w=0 , (4.1)
where @{®"(x) is the approximate numerical eigenfunc-
tion [7(x) in Eq. (3.20)] of the confined problem, corre-
sponding to step A.

In this section we present an algorithm, which we will
call the increasing boundaries algorithm (IBA), that
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merges a numerical implementation of the increasing
boundaries theorems (Sec. II) with the matrix approach
of Sec. III to solve the Schrodinger equation correspond-
ing to the unbounded problem.

The algorithm is the following. In the first step, an ini-
tial value (R °) for the boundaries and a number of points
(N) are selected. This allows the calculation of the step
(h) as

_ 2R°
N+1”

which will be held constant. The potential ¥(x) is calcu-
lated for all points in the grid and the Dirichlet problem
in (—R%RO) is solved using Lindberg’s matrix method
(see Sec. IIT). After this step, we have the first approxi-
mation to the eigenfunctions and eigenvalues which we
will denote as {@}(x), x €(—R%R?)} and {e}}, respec-
tively. For the first iteration we define {@J(x)=0,
x €(—R%R°)} and thus the distance between ¢?(x) and
@l(x) is 1. This can be seen from the expression that we
use to calculate the distance between two successive
eigenfunctions. Let {¢M(x), x&(—RM™,RM)} and
(@Mt x), xE€(—RMTL RM*1)} where RMTI>RM,
be any two successive solutions of Dirichlet’s problem as-
sociated with the intervals (—R™,R™) and
(—RMTURM*TY) regpectively. To guarantee that the
IBA satisfies the conditions set by the increasing boun-
daries theorems, it is necessary to comply with Eq.
(2.10). This leads us to the following expression for the

distance between @¥(x) and M *1(x):

(4.2)

RM+1

et =@Mle= | [ . dxlel TP
RM
+f‘Rde[<pf”(x)]2

RM

—2f_Rde M 1(x)pM(x) 4.3)
Notice that in Eq. (4.3) we are using the norm in
L,(— o,o). Thus, from Eq. (4.3) and the definition for
@%(x), we have that the distance between @}(x) and ¢(x)
is 1. Since the desired convergence criterion will always
be less than 1, we now proceed to increase the interval.
This is done by adding a fixed number of points (N,)
beyond the previous limits. The number of points added
must be even to assure that the interval is increased
symmetrically. Thus the updated values of the boun-
daries are calculated according to the expression

RM=RM™1+IN K, M=12,..., 4.4)

with a similar expression for the negative part of the in-
terval. Now the Dirichlet problem in the interval
(—RM RM) is solved. The distances between the new
wave functions {@M(x)} and the previous {@¥ ~!(x)] are
calculated according to Eq. (4.3) and when this distance
is less than a given tolerance the procedure for the ith
eigenstate ends.

In the following section we illustrate the application of
the IBA to some well known problems.
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V. RESULTS

To show the advantages of the IBA described in the
previous section, now we apply it to some well known
one-dimensional problems. First we show some features
of the method by solving the one-dimensional
Schrédinger equation for the harmonic oscillator. Since
the solutions of the unbounded harmonic oscillator are
known analytically, we can test the behavior, stability,
and speed of convergence of the IBA. The second prob-
lem to be addressed is that of the quartic potential, Eq.
(1.2). As noted in the Introduction, this is a very well
studied problem. Due to the fact that the known analyti-
cal solutions are not valid for the whole range of values of
the coupling parameter a,, it is important to have a reli-
able numerical method that allows the calculation of the
solutions corresponding to any value of the anharmonici-
ty parameter. In the present work we will consider quar-
tic potentials with a,>0. When a, is positive this poten-
tial has only one minimum. This means that in this work
we will not study the solutions of symmetrical double
wells.

Finally, the sextic potential is considered. The general
form of this last potential is

Vix)=ax?+ax*+ax® . (5.1)

There is considerably less work done on this potential.
Recently, a perturbative method [6] has been devised to
solve the one-dimensional Schrédinger equation for this
potential. We will compare our results with those avail-
able in the literature.

A. Harmonic oscillator

In Fig. 1 we present the behavior of the first ten eigen-
values of the harmonic oscillator as a function of the size
(—R™M,RM) of the interval. Three things should be no-
ticed. First, one can see that the exact eigenvalues are
asymptotes of the curves {A;(R™)}. The second feature
to be noticed is that the curves are nonincreasing. Final-
ly, we see that these curves never cross. These observa-

L

A (RM)

vl e b b

FIG. 1. Eigenvalues of the bounded harmonic oscillator as a
function of the size of the confining interval (—R™,RM). States
with even parity are shown with solid lines and states with odd
parity are shown with dashed lines. The step used is 2 =0.0025.
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(a)

i

A (RM) - (RM)
I N

i
N

oM ()-9M0 I

FIG. 2. Convergence of the (a) eigenvalues and (b) eigenfunc-
tions of the bounded harmonic oscillator. Solid lines are used
for even states and dashed lines for odd states. The step used is
h =0.0025.

tions provide numerical evidence for the theorems recent-
ly proved by Nufiez that are summarized in Sec. II. To
illustrate the convergence of the IBA, in Fig. 2 we
present the behavior of the distance between two succes-
sive eigenvalues and eigenfunctions with respect to the
size of the interval for the first ten states of the harmonic
oscillator. The distance was calculated according to Eq.
(4.3). From these plots it is clear that the method con-
verges in the sense of Cauchy. By comparing the conver-
gence of the eigenvalues and eigenfunctions, we see that
the rate of convergence of the eigenvalues is faster than
that corresponding to the eigenfunctions. Thus, by
achieving convergence in the eigenfunctions, the conver-
gence of the eigenvalues is automatically guaranteed.
Also note that the convergence is slower for the higher
excited states than for the lower ones. In other words,
more cycles (intervals) are needed to achieve the same
quality (convergence threshold) in the solution of an ex-
cited state.

To show that the IBA converges in the norm to the ex-
act eigenfunctions of the unbounded problem, in Fig. 3
we depict the behavior of the distance between the solu-
tion corresponding to a given R™ and the exact eigen-
function of the unbounded harmonic oscillator. We have
found that the curves for two different steps (h =0.01
and 0.0025) are practically the same. It is noteworthy
that for small confinements the distance of the higher ly-
ing excited states shows an oscillatory behavior. From
the observation made above in regard to the invariant na-
ture of these plots for two different small steps, we think
that this behavior is not due to any numerical instability
of the method.

1959

o™ () - 0, ()l

FIG. 3. Convergence in the norm of the eigenfunctions of the
bounded harmonic oscillator to the exact eigenfunctions of the
unbounded harmonic oscillator. Solid lines are used for even
states and dashed lines for odd states. The step used is
h=0.0025.

The critical parameter in the present method is the
step (h), which in turn depends on the size of the interval
and the number of points in the grid. If k is not small
enough, the approximated eigenvalues can go below the
exact ones. This is illustrated in Table I where we
present results for two different values of h. For
h=10"2 all the approximated eigenvalues, except the
ground state, go below the exact value. When & is de-
creased to h=2.5X1073, all the low lying states con-
verge from above, and the high lying states are only
slightly below the exact eigenvalue. We performed a di-
vided differences analysis for several states of the bound-
ed harmonic oscillator, and for several confinements.
The analysis shows that indeed the errors in the eigenval-
ues provided by the present implementation of Lindberg’s
matrix method are of order #*. Thus we can write that

A;(h,R)=E(R)+C;(R)h*, (5.2)
where A;(h,R) is the approximated eigenvalue E;(R) is
the exact eigenvalue and C;(R) is the error coefficient.
Using the values shown in Table I corresponding to the
steps h; =0.01 and h,=0.0025, we can improve the ac-
curacy of the eigenvalues by a Richardson extrapolation,
as has been suggested by Killingbeck [26]. The extrapo-
lated values are also shown in Table I. As can be seen,
for all the eigenvalues the convergence of the bounded to
the unbounded eigenvalues is always from above. This
confirms the fact that Numerov’s method is exact in the
limit A —0.

Certainly, for a given & there is always one excited
state such that its corresponding energy is lower than the
exact one. However, the smaller the step, the higher the
excited state where this latter behavior will be observed.
Thus, if one is interested in the solutions of highly excited
states, one should be careful to use a step small enough to
assure the convergence from above or to perform a
Richardson extrapolation. The behavior described in this
paragraph is a consequence of the nonvariational nature
of the finite differences method.
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TABLE 1. Selected eigenvalues of the bounded harmonic oscillator as a function of the size of the interval (R) for two different
steps (#) and the corresponding extrapolated values.

R Ao A Ay Aq Ag Ao
h=0.01
1.0 1.298459 8313 5.0755819935 11.258 8255496 79.121 8987367 100.095 044 307 9 123.535436 8136
2.0 0.5374612092 1.764 8164380 3.3997882364 20.4035193924 25.6473311119 31.507 7944420
3.0 0.5003910829 1.506 0815270 2.5411272583 10.303 7848653 12.629086917 3 15.2293857593
4.0 0.500 000490 8 1.500014 602 7 2.5002011790 7.793 679578 8 9.091013 0662 10.533 684376 6
5.0 0.500 0000000 1.500 000 003 4 2.5000000830 7.502927978 5 8.5114712859 9.5365729228
6.0 0.5000000000 1.499 999 999 7 2.499 9999990 7.500001 2412 8.500 008 590 6 9.5000499178
7.0 0.500 000 0000 1.499 999999 7 2.499 9999990 7.499 999977 6 8.499 999967 8 9.499999958 1
8.0 0.500 0000000 1.499999 999 7 2.499 9999990 7.4999999775 8.499 999967 5 0.499 999 954 7
h =0.0025
1.0 1.2984598320 5.0755820151 11.258 8257806 79.121 9805330 100.0952101396 123.535748 8913
2.0 0.537461209 3 1.764 816438 8 3.3997882411 20.403 520678 5 25.6473337124 31.507 799 328 2
3.0 0.5003910829 1.5060815273 2.5411272595 10.303 784985 8 12.629087 1552 15.229 3862003
4.0 0.500 0004909 1.500014 6030 2.500201 1800 7.7936796101 9.091013 1210 10.533 6844705
5.0 0.500 000 000 1 1.500 000003 7 2.500000 0840 7.502 9280010 8.5114713189 9.5365729703
6.0 0.5000000000 1.500 0000000 2.5000000000 7.500001 263 6 8.500008 6230 9.500049 9629
7.0 0.500 000 0000 1.500 000 0000 2.500 0000000 7.499 9999999 8.5000000003 9.500 000003 2
8.0 0.500 0000000 1.500 000 0000 2.500 0000000 7.499 999999 9 8.499 999999 9 9.499 999 999 8
Extrapolated
1.00 1.298 459 832 5.075582015 11.258 825780 79.121980212 100.095 209 489 123.535747 667
2.00 0.537461209 1.764 816 439 3.399 788 241 20.403 520673 25.647 333702 31.507 799 309
3.00 0.500391 083 1.506 081 527 2.541 127259 10.303 784 985 12.629087 154 15.229 386 199
4.00 0.500 000491 1.500014 603 2.500201 180 7.793 679 610 9.091013 121 10.533 684 470
5.00 0.500 000 000 1.500 000 004 2.500 000 084 7.502 928 001 8.511471319 9.536572970
6.00 0.500 000 000 1.500 000 000 2.500 000 000 7.500001 264 8.500 008 623 9.500 049 963
7.00 0.500 000 000 1.500 000 000 2.500 000 000 7.500 000 000 8.500 000 000 9.500 000 003
8.00 0.500 000 000 1.500 000 000 2.500 000 000 7.500 000 000 8.500 000 000 9.500 000 000

TABLE II. Selected expectation values {x2) and {(x*) for the bounded harmonic oscillator as a
function of the size of the interval. The exact analytical values for the unbounded harmonic oscillator
are at the bottom of each column. The step used is # =0.0025.

R (x?)8 (x)8 (x)f (x)F
1.0 0.128292 5277 0.039909928 4 0.280444 8495 0.112594 404 1
2.0 0.402907 823 5 0.4308148763 0.9962190116 1.476 1065210
3.0 0.497078 7358 0.733 1972145 1.461 6785015 3.4773785530
4.0 0.499 992 8369 0.749 9337682 1.499 803 064 7 3.7478977479
5.0 0.499 999998 2 0.7499999749 1.4999999167 3.749998 734 1
6.0 0.5000000000 0.7500000000 1.500 0000000 3.749 999 999 9
7.0 0.500 0000000 0.750 0000000 1.500 000 0000 3.750 0000000
8.0 0.500 0000000 0.750 0000000 1.5000000000 3.7500000000

Exact 0.5 0.75 1.5 3.75
R (x)§ (x")§ (x2)§ (x*)¥
1.0 0.325734 8207 0.1844738126 0.3314735027 0.196 1039162
2.0 1.3313016579 3.0118977002 1.335927 6390 3.169498 444 4
3.0 3.109 685 667 2 15.178 7913947 3.1052798153 16.753 6412551
4.0 4.408 5175735 29.387 6794299 5.9738013597 58.286 8827712
5.0 44997584154 30.745277701 4 9.090977 8280 124.853048 6877
6.0 4.499 999 9609 30.749 999017 7 9.498 807 538 4 135.711363 1350
7.0 4.499 999 999 9 30.749 999 999 3 9.499999 8730 135.749995053 5
8.0 4.499 999999 9 30.749 999 999 3 9.499 999999 5 135.749999988 7

Exact 4.5 30.75 9.5 135.75
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TABLE III. Eigenvalues for the quartic anharmonic potential for different values of the anharmonicity parameter, calculated with
a step of h =0.0025.

a, €y € €y €3 €4 €s
0.0001  0.5000749738 1.500 3747940 2.5009742325 3.501873 0354 4.503 070949 4 5.504 5677217
0.001 0.5007473956 1.503 7296157 2.509 6743527 3.518557 1868 4.5303542137 5.545042027 5
0.01 0.507256204 5 1.535648278 3 2.590 845 796 2 3.671094 9422 47749131186 5.901026 674 1
0.1 0.559 146 3272 1.769 502 6440 3.138 624308 5 4.628 882 808 9 6.220300899 9 7.899 7672277
(0.559 146 33)* (1.769 502 6) (3.138 624)2 (4.628 883)2 (6.220 30)*
(0.559 146 3)® (1.769 502 6)° (3.138 624 3)° (4.628 882 8)° (6.220 300 9)® (7.899 767 2)°
1.0 0.803 7706512 2.737 8922680 5.179291 6876 7.942 403 984 2 10.9635830937  14.2031391036
(0.803 770 66)* (2.737892)* (5.179292) (7.942 40) (10.963 58)*
10.0 1.504 972407 8 5.3216082562  10.3470555900  16.090 146 869 4 224087512846  29.2114848508
(1.504972)* (5.321 608)* (10.347 06)* (16.090 1) (22.408 8)*
100.0 3.1313841649  11.1872542501  21.906898 1443  34.182524096 5 477072058449  62.2812378830
(3.131 384 2) (11.187254)* (21.906 90)* (34.1825)2 (47.7072)*
1000.0 6.6942208497  23.9722060474  47.0173386859  73.4191136887 102.5161567338 133.876 8903537
(6.694 221)2 (23.97221)® (47.017 34)2 (73.419 11)2 (102.516)*
10 000.0 14.3979953357  51.5861032428 101.2123153349 158.0722059828  220.7408526747 288.2878327977
100 000.0 31.0082707003 111.1108209648 218.0165676083 340.507728 5780  475.5143827648 621.0317024679

#Values taken from Ref. [11].
*Values taken from Ref. [6].

To show that the wave functions are converging to the
exact unbounded ones, in Table II we report some expec-
tation values

R
<x"),8=f_Rdx x| pR(x)|?, (5.3)
as a function of the size of the interval. They converge
smoothly from below to the exact analytical values. Even
for highly excited states that are rapidly oscillating, the

limit value obtained with the IBA reflects the high quali-
ty of the wave function that is provided by the algorithm.
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B. Anharmonic oscillators: The quartic and sextic potentials

To test the IBA, we have solved the quartic potential

Vix)=1x*+a,x* (5.4)
for several values of the anharmonicity parameter a,. In
Table III we report the eigenvalues of the first six states
of the quartic potential for several values of the anhar-
monicity parameter. Hioe, MacMillen, and Montroll
[10] showed that the solutions of this potential can be la-
beled according to the value of a,. They found three re-
gimes: when «a, is small, the solutions are pure harmonic,
when a, is large, the solutions are classified as pure quar-
tic, and there is a transition zone or boundary layer
where the behavior is mixed. In Fig. 4 we depict the vari-
ation of the first ten energy levels with the anharmonicity
parameter. The behavior obtained with the IBA is the

Qj"' ] TABLE IV. First ten eigenvalues for the sextic potential with
E a,=0.5 and a;=1.0. The step used is # =0.0025.
1 n Present work Ref. [6]
1 0.874 643498 6 0.874 643498 6
[ ] 2 3.1113928416 3.1113928416
1071 L ! I ! ! ! I I 3 6.197 232 644 1 6.197232 6442
1074 10°2 109 102 10% 4 9.932773 18838 9.9327731892
5 14.206 3201777 14.2063201790
(xz 6 18.953 713126 8 18.9537131297
7 24.129 6504872 24.129 6504930
FIG. 4. Variation of the first ten eigenvalues of the unbound- g §22§3 ?:(9) ?2(9),8, gggg: 21;:(9) %gg?
ed quartic anharmonic oscillator, Eq. (5.4), with respect to the 10 41.919401 648 1 41.919401 6778

anharmonicity parameter a,.
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FIG. 5. Variation of the first ten eigenvalues of the unbound-
ed sextic anharmonic oscillator, Eq. (5.5), for different values of
the anharmonic parameter , and as a function of a;.

same as that reported by Hioe, MacMillen, and Montroll
[10]. We would like to stress that with the IBA it is pos-
sible to obtain the solutions for any value of the parame-
ter a,. This is in contrast to some numerical techniques
that are only applicable for certain values of the anhar-
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monicity parameter.
Finally, we apply the IBA to the sextic potential

Vix)=1ix2+ax*+ax® . (5.5)

In Table IV we present the results for the first ten ei-
genvalues corresponding to the sextic potential with
a,=0.5 and a3;=1.0. One can see that the values ob-
tained with the IBA are in excellent agreement with those
calculated by Aguiar and Xavier [6]. Our values for
some of the excited states are slightly lower than those re-
ported by these latter authors. To show the applicability
of the IBA, we have calculated the solutions of the sextic
potential for a set of a, values that correspond to each of
the different zones (harmonic, boundary, and quartic)
found by Hioe, MacMillen, and Montroll [10] in the
quartic potential. The results are depicted in Fig. 5. One
can see that, similarly to the situation in the quartic po-
tential case, for each value of a, there are three zones.
As this anharmonic contribution increases, the boundary
layer moves towards greater values of a;.

VI. CONCLUSIONS

In this work we have presented a robust and strongly
convergent method in the norm of the Hilbert space
L,(— o0, ) to solve one-dimensional quantum problems.
By combining a matrix method and an implementation of
the increasing boundaries theorems we have shown that
one avoids some important disadvantages of other ap-
proaches that solve the one-dimensional Schrodinger
equation. First, there is no need to provide initial guesses
to solve the equation; second, no basis set is required and,
third, there is no need to fix a practice infinity. For the
bounded harmonic oscillator we have obtained very accu-
rate eigenvalues by means of Richardson’s extrapolation.
These values can serve as benchmarks for other analytical
and numerical techniques. The method has been success-
fully used to solve the quartic and sextic anharmonic os-
cillators. Even though the potentials considered in the
present work are defined and solved in a symmetric inter-
val, this is not a limitation for the present approach since
the method can easily be extended to potentials defined in
nonsymmetric intervals. The methodology developed
here is also useful to tackle other interesting problems
concerned with confined systems, for example, the study
of atoms under pressure. Work along these lines is in
progress.
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